Exercise 7.7.4

Find the general solutions to the following inhomogeneous ODEs:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\sin x
$$

Solution

This is a linear ODE, so its general solution can be written as a sum of the complementary solution and the particular solution.

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

The complementary solution satisfies the associated homogeneous equation.

$$
y_{c}^{\prime \prime}-3 y_{c}^{\prime}+2 y_{c}=0
$$

Because it's homogeneous and the coefficients on the left side are constant, the solution for y_{c} is of the form $e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}-3\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
\begin{gathered}
r^{2}-3 r+2=0 \\
(r-1)(r-2)=0 \\
r=\{1,2\}
\end{gathered}
$$

Two solutions to the ODE are $y_{c}=e^{x}$ and $y_{c}=e^{2 x}$. By the principle of superposition, the general solution is a linear combination of these two.

$$
y_{c}(x)=C_{1} e^{x}+C_{2} e^{2 x}
$$

On the other hand, the particular solution satisfies

$$
y_{p}^{\prime \prime}-3 y_{p}^{\prime}+2 y_{p}=\sin x
$$

Because the inhomogeneous term is a sine function and there are even and odd derivatives on the left, y_{p} is expected to be a linear combination of sine and cosine: $y_{p}(x)=A \cos x+B \sin x$.
Substitute this formula into the ODE to determine A and B.

$$
\begin{gathered}
(A \cos x+B \sin x)^{\prime \prime}-3(A \cos x+B \sin x)^{\prime}+2(A \cos x+B \sin x)=\sin x \\
(-A \cos x-B \sin x)-3(-A \sin x+B \cos x)+2(A \cos x+B \sin x)=\sin x \\
(-A-3 B+2 A) \cos x+(-B+3 A+2 B) \sin x=\sin x
\end{gathered}
$$

Match the coefficients on both sides to obtain a system of equations for A and B.

$$
\begin{aligned}
& -A-3 B+2 A=0 \\
& -B+3 A+2 B=1
\end{aligned}
$$

Solving it yields

$$
A=\frac{3}{10} \quad \text { and } \quad B=\frac{1}{10} .
$$

Therefore, the particular solution is $y_{p}(x)=(3 / 10) \cos x+(1 / 10) \sin x$, and the general solution to the original ODE is

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x) \\
& =C_{1} e^{x}+C_{2} e^{2 x}+\frac{3}{10} \cos x+\frac{1}{10} \sin x .
\end{aligned}
$$

